Reducing enteric methane emissions from dairy cattle

"Dairy Girls"

Francisco Peñagaricano, Ph.D. CDCB Industry Meeting October 4, 2023

Methane emissions

□ methane represents 11% of total U.S. greenhouse gas emissions

2nd most important greenhouse gas after CO₂

□ enteric fermentation accounts for 27% of total U.S. methane emissions

2nd most important source after natural gas & petroleum systems

□ enteric CH₄ represents a loss of energy, 6-12% of gross energy intake

energy that could otherwise be available for growth or production

□ reducing enteric CH₄ would benefit the environment and improve efficiency

Integrating genomic, milk spectrometry, and microbial manipulations to mitigate enteric methane emissions from dairy cattle

overall goal: reduce enteric CH₄ emissions from dairy cattle by combining

- selective breeding
- milk mid-infrared spectra
- rumen microbiome interventions

Francisco Peñagaricano, quantitative genomics Hilario C Mantovani, rumen microbiology Heather M White, nutritional physiology Kent A Weigel, breeding & genetics

Michael J VandeHaar, sustainable food systems Robert J Tempelman, statistical genetics

James E Koltes, genomics & bioinformatics Ranga Appuhamy, nutrition/sustainable agriculture

José EP Santos, nutrition, health & fertility **Kwang C Jeong**, microbiology & food safety

Ransom L Baldwin, nutritional genomics Paul M VanRaden, sustainable breeding goals Asha Miles, genomics & microbiology Elizabeth A French, precision feeding Kenneth F Kalscheur, sustainable production

NEW ZEALAND AGRICULTURAL GREENHOUSE GAS Research Centre

Phenotyping

respiration chamber

(gold standard)

GreenFeed system

Laser detector

GreenFeed system

This system delivers reliable estimates of enteric methane emissions

key: obtain numerous short-term records measured at different times of the day for multiple days

GreenFeed system

Pen 30 at UW Emmons Blaine Arlington Dairy Research Center

Variability in CH₄ emissions

lactating Holstein cows

Selective breeding

□ selection is a promising tool to mitigate enteric methane emissions

recent studies have shown that methane emission traits are heritable

genomics has facilitated selection for traits like methane emissions

- phenotyping can be performed on a few genotyped cows,
- and this population can be used to predict gPTAs for the entire population

our goal:

- develop a reference population for methane emissions
- develop genomic evaluations for methane emission traits, and
- facilitate their incorporation into selection indices

Trait definition

Alternative methane emission traits

- **methane production** (grams CH₄ per day)
- **methane yield** (grams CH₄ per kg of dry matter intake)
- **methane intensity** (grams CH₄ per kg of energy-corrected milk)
- **residual methane** (grams CH₄ regressed on DMI, BW, and MilkE)

Residual CH₄ production

CH₄ production regressed on (MilkE + mBW) or (DMI)

Milk spectrometry

□ Fourier transform infrared spectroscopy is a powerful phenotyping tool

high-throughput, low-cost, non-invasive, real-time predictions

□ milk mid-infrared spectra data has been used to predict complex traits

energy status, metabolic profiles, health status, and fertility, among others

our goal:

determine the value of using milk spectra to predict CH₄ emissions

Rumen microbiome

enteric CH₄ is formed exclusively by methanogens in the rumen

Microbiome

Rumen microbiome

enteric CH₄ is formed exclusively by methanogens in the rumen

our goal:

- reveal how the microbiome composition/activity affects CH₄ formation
- assess the relative contribution of host and microbes to CH₄ formation

Rumen microbiome

Rumen microbiome mediates part of the cow genetic effects

Parameters

Outcomes/Solutions

routine genomic evaluations for CH₄ emission traits in U.S. dairy cattle

changes achieved through genetic selection are incremental, cumulative and permanent (very cost-effective strategy)

reveal if milk spectra is a good predictor of CH₄ emissions

milk spectra could be used to increase the accuracy of genomic evaluations of CH_4 traits

milk spectra could be used to optimize cow management in the dairy farm (assign high methane-emitting cows to specific diets)

deeper understanding of how the host influences diversity/activity of methanogens

targeted strategies to reduce CH₄ formation in the rumen

microbial solutions

spectra-based solutions

genomic

solutions

Acknowledgments

Francisco Peñagaricano, quantitative genomics Hilario C Mantovani, rumen microbiology Heather M White, nutritional physiology Kent A Weigel, breeding & genetics

Michael J VandeHaar, sustainable food systems Robert J Tempelman, statistical genetics

James E Koltes, genomics & bioinformatics Ranga Appuhamy, nutrition/sustainable agriculture

José EP Santos, nutrition, health & fertility **Kwang C Jeong**, microbiology & food safety

Ransom L Baldwin, nutritional genomics Paul M VanRaden, sustainable breeding goals Asha Miles, genomics & microbiology Elizabeth A French, precision feeding Kenneth F Kalscheur, sustainable production

Thanks for your attention!

Dr. Francisco Peñagaricano

fpenagarican@wisc.edu

http://fpenagaricano-lab.org